Posts Tagged ‘Triple Integrals’

This entry will no doubt get further under the skin of those who contend that I’m pushing things too far (and that is exactly why I’m publishing it).  This is a natural extension of the 2-dimensional analog in which circle area was derived. Cylindrical coordinates are identical to polar coordinates with a 3rd dimension thrown in. Directly below, the vertical dimension is governed by a linear function which results in a cone.

In the spirit of consistency, I’ve included a second example with which to draw comparisons to the first. Everything is identical between the two cases with one exception; the function which governs the vertical dimension in example two is that of a semi-circle.

 

Volume of a Cone

VolumeCone Cylindrical

Interact with cylindrical coordinates to see how the 3-dimensional sector changes.

 

Volume of a Sphere

VolumeSphere Cylindrical

 

Thanks for reading.